R/package.R
dyngen.Rd
A toolkit for generating synthetic single cell data.
initialise_model()
: Define and store settings for all following steps. See each of the sections below for more information.
Use a predefined backbone:
Create a custom backbone:
Visualise the backbone:
generate_tf_network()
: Generate a transcription factor network from the backbone
tf_network_default()
: Parameters for configuring this step
generate_feature_network()
: Generate a target network
feature_network_default()
: Parameters for configuring this step
plot_feature_network()
: Visualise the gene network
generate_kinetics()
: Generate the gene kinetics
kinetics_default()
, kinetics_random_distributions()
: Parameters for configuring this step
generate_gold_standard()
: Simulate the gold standard backbone, used for mapping to cell states afterwards
gold_standard_default()
: Parameters for configuring this step
plot_gold_mappings()
: Visualise the mapping of the simulations to the gold standard
plot_gold_simulations()
: Visualise the gold standard simulations using the dimred
plot_gold_expression()
: Visualise the expression of the gold standard over simulation time
generate_cells()
: Simulate the cells based on its GRN
simulation_default()
: Parameters for configuring this step
simulation_type_wild_type()
, simulation_type_knockdown()
: Used for configuring the type of simulation
kinetics_noise_none()
, kinetics_noise_simple()
: Different kinetics randomisers to apply to each simulation
plot_simulations()
: Visualise the simulations using the dimred
plot_simulation_expression()
: Visualise the expression of the simulations over simulation time
generate_experiment()
: Sample cells and transcripts from experiment
list_experiment_samplers()
, experiment_snapshot()
, experiment_synchronised()
: Parameters for configuring this step
simtime_from_backbone()
: Determine the simulation time from the backbone
plot_experiment_dimred()
: Plot a dimensionality reduction of the final dataset
as_dyno()
, wrap_dataset()
: Convert a dyngen model to a dyno dataset
as_anndata()
: Convert a dyngen model to an anndata dataset
as_sce()
: Convert a dyngen model to a SingleCellExperiment dataset
as_seurat()
: Convert a dyngen model to a Seurat dataset
generate_dataset()
: Run through steps 2 to 8 with a single function
plot_summary()
: Plot a summary of all dyngen simulation steps
example_model: A (very) small toy dyngen model, used for documentation and testing purposes
realcounts: A set of real single-cell expression datasets, to be used as reference datasets
realnets: A set of real gene regulatory networks, to be sampled in step 3
dyngen: This help page
get_timings()
: Extract execution timings for each of the dyngen steps
combine_models()
: Combine multiple dyngen models
rnorm_bounded()
: A bounded version of rnorm()
runif_subrange()
: A subrange version of runif()
model <- initialise_model(
backbone = backbone_bifurcating()
)
# \dontshow{
# actually use a smaller example
# to reduce execution time during
# testing of the examples
model <- initialise_model(
backbone = model$backbone,
num_cells = 5,
num_targets = 0,
num_hks = 0,
gold_standard_params = gold_standard_default(census_interval = 1, tau = 0.1),
simulation_params = simulation_default(
burn_time = 10,
total_time = 10,
census_interval = 1,
ssa_algorithm = ssa_etl(tau = 0.1),
experiment_params = simulation_type_wild_type(num_simulations = 1)
)
)
# }
# \donttest{
model <- model %>%
generate_tf_network() %>%
generate_feature_network() %>%
generate_kinetics() %>%
generate_gold_standard() %>%
generate_cells() %>%
generate_experiment()
#> Generating TF network
#> Sampling feature network from real network
#> Generating kinetics for 33 features
#> Generating formulae
#> Generating gold standard mod changes
#> Precompiling reactions for gold standard
#> Running gold simulations
#>
| | 0 % elapsed=00s
|======== | 14% elapsed=00s, remaining~00s
|=============== | 29% elapsed=00s, remaining~00s
|====================== | 43% elapsed=00s, remaining~00s
|============================= | 57% elapsed=00s, remaining~00s
|==================================== | 71% elapsed=00s, remaining~00s
|=========================================== | 86% elapsed=00s, remaining~00s
|==================================================| 100% elapsed=01s, remaining~00s
#> Precompiling reactions for simulations
#> Running 1 simulations
#> Mapping simulations to gold standard
#> Warning: Simulation does not contain all gold standard edges. This simulation likely suffers from bad kinetics; choose a different seed and rerun.
#> Performing dimred
#> Simulating experiment
#> Warning: Certain backbone segments are not covered by any of the simulations. If this is intentional, please ignore this warning.
#> Otherwise, increase the number of simulations (see `?simulation_default`) or decreasing the census interval (see `?simulation_default`).
dataset <- wrap_dataset(model, format = "dyno")
# format can also be set to "sce", "seurat", "anndata" or "list"
# library(dynplot)
# plot_dimred(dataset)
# }